CLINICAL TRIAL DESIGNS FOR RARE DISEASES: CROSSOVER AND N-OF-1 TRIALS

Susan S. Ellenberg, Ph.D.

Perelman School of Medicine at the University of Pennsylvania

Symposium on Best Practices in Clinical Study Design for Rare Diseases
Washington, DC
April 29, 2013
CROSS-OVER TRIALS

- Basic concept
 - Every subject is exposed to both treatments in different time intervals
 - Subjects are randomized to order in which they receive treatment or control
 - Don’t have to worry about imbalance on prognostic factors; primary comparison is within subject
 - Attractive to study candidates, since assured of getting active treatment at some point
CROSS-OVER TRIALS

Basic concept

- Every subject is exposed to both treatments in different time intervals
- Subjects are randomized to order in which they receive treatment or control
- Don’t have to worry about imbalance on prognostic factors; primary comparison is within subject
- Attractive to study candidates, since assured of getting active treatment at some point
- Since each subject serves as own control, need fewer subjects
ADDITIONAL ISSUES

❖ Has to be a treatment taken regularly over time
 — Wouldn’t apply to acute treatments, like antibiotics for infections, or treatment of asthmatic attack

❖ Need to randomize order of treatment
 — Treatment given first may tend to show better (or worse) outcome

❖ Subjects may be treated for more than 2 periods
EXAMPLE

- Two treatments to be compared
- Treatment interval of 2 weeks
- Required washout period of 1 week

<table>
<thead>
<tr>
<th>Subject</th>
<th>Interval 1</th>
<th>Wash</th>
<th>Interval 2</th>
<th>Wash</th>
<th>Interval 3</th>
<th>Wash</th>
<th>Interval 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td>B</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>002</td>
<td>B</td>
<td>Wash</td>
<td>A</td>
<td>Wash</td>
<td>B</td>
<td>Wash</td>
<td>A</td>
</tr>
<tr>
<td>003</td>
<td>B</td>
<td>Wash</td>
<td>A</td>
<td>Wash</td>
<td>A</td>
<td>Wash</td>
<td>B</td>
</tr>
<tr>
<td>004</td>
<td>A</td>
<td>Wash</td>
<td>B</td>
<td>Wash</td>
<td>A</td>
<td>Wash</td>
<td>B</td>
</tr>
</tbody>
</table>
POTENTIAL PROBLEM

- Possibility of **carryover effects** from one treatment phase to the next
- Dealt with by including a “washout” period during which no treatment is given
- Washout period must be long enough to ensure that prior treatment is not contributing to effect in next phase
- Hard to be sure how long washout period needs to be
EVALUATING CARRYOVER EFFECTS

- Statistical models can be developed to permit estimation of carryover effects, and testing for their presence.
- If trial is powered to detect main effect, on assumption of zero carryover effect, the power to detect carryover effect will be low.
- Dilemma: if we size trial to have good power to test for carryover effects, we lose the efficiency of the cross-over design.
USE OF CROSS-OVER DESIGNS

- Bioequivalence trials
 - Trials in healthy volunteers to assess comparability of pharmacokinetic parameters of generic to marketed drug
- Medical areas requiring chronic administration of treatment
 - Epilepsy
 - Diabetes
 - Pain relief
 - Asthma
N-OF-1 DESIGNS

- Developed as a rigorous way to assess optimal treatment for an individual patient
- Works like a cross-over trial
 - Patient alternates between active treatment and placebo, or between alternative active treatment regimens
 - More than 2 periods usually necessary
 - To be informative, must see rapid improvement with one regimen, rapid decline when that regimen is withdrawn
N-of-1 trial carried out to determine if oral theophylline was effective as part of asthma regimen

Double-blind trial of 10-day treatment periods on either treatment or placebo

Outcomes assessed by patient self-report on 7-point scale (1 worst)

- Shortness of breath
- Need for albuterol for acute symptoms
- Sleep disturbance
EXAMPLE: RESULTS

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>DRUG</th>
<th>PLACEBO</th>
<th>DRUG</th>
<th>PLACEBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortness of breath</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Need for inhaler</td>
<td>3</td>
<td>5.5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>5</td>
<td>5.5</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
EXTENSION TO POPULATION STUDIES

- N-of-1 trials could be used in early stage of drug development to facilitate design and conduct of definitive trials
 - Estimate proportion of responders
 - Study dosage

- Statistical model for combining n-of-1 trials to estimate effects in population has been developed (Zucker et al, J Clin Epid, 1997)
LIMITS OF N-OF-1 STUDIES

- As with cross-over studies, issue is interference over treatment periods
- Washout period required; need to know required length to avoid carryover effect
- Most applicable to chronic conditions where alleviation of symptoms is treatment goal
- Could also be used to assess biomarker changes if carefully monitored to keep subjects out of danger zone